Abstract

We explore the properties of the bipolaron in a 1D Holstein-Hubbard model with dynamical quantum phonons. Using a recently developed variational method combined with analytical strong coupling calculations, we compute correlation functions, effective mass, bipolaron isotope effect, and the phase diagram. The two site bipolaron has a significantly reduced mass and isotope effect compared to the on-site bipolaron, and is bound in the strong coupling regime up to twice the Hubbard U naively expected. The model can be described in this regime as an effective t-J-V model with nearest neighbor repulsion. These are the most accurate bipolaron calculations to date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.