Abstract

Researchers' interest in proton-conducting reversible solid oxide cells (RSOCs) is growing due to their distinct benefits. In the present work, single-phase BaCe0.9–xMoxY0.1O3–δ (x = 0, 0.025, 0.05, 0.1, 0.2) electrolyte is prepared via sol-gel method and sintered at 1400 °C for 10 h. Optimal density, structure, composition, electrochemical performance, and thermal stability are confirmed via SEM, XRD, EDS, XPS, FTIR, EIS, and TGA/DSC. The conductivity of the grain interior and boundaries between 127 and 727 °C is reported for the first time in SOFC studies. The BaCe0·875Mo0·025Y0·1O3–δ sample shows a grain interior conductivity of 1.3 × 10−3 S cm−1 at 707 °C with grain interior activation energy of 0.75 eV (127–727 °C), and a grain boundary activation energy of 0.85 eV (380–727 °C), 0.43 eV (167–357 °C) in air atmosphere, respectively. BaCe0.875Mo0.025Y0.1O3–δ showed extreme stability for 300 h, and thus can be considered suitable for an efficient protonic conductor at intermediate temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.