Abstract
The development of novel composite electrode materials is essential to fabricating supercapacitors with high specific capacitance and good stability. In this study, MnOOH nanorods adorned with CeO2 (CeMn composites) have been satisfactorily synthesized through in-situ growth of tiny CeO2 nanoparticles using hydrothermal treatment. SEM images revealed that the granular CeO2 particles are adhered to the surfaces of nanorod-shaped MnOOH. XRD analysis confirmed the CeMn composites maintain the crystal structure of MnOOH and CeO2 with high purity. The EDS elemental mapping images demonstrated that Mn, O, and Ce elements are homogenously dispersion distributed in the CeMn composites. The supercapacitive performance of the MnOOH and CeMn composites pasted onto the Ni foam was evaluated determined through electrochemical measurements. The Ce0.05Mn1 (Ce/Mn molar ratio of 0.05/1) as a supercapacitor electrode exhibited an excellent specific capacitance of 857.62 F/g at 1 A/g, which is higher than the values for the MnOOH. Moreover, the prepared Ce0.05Mn1 still could retain good cycling stability over 3000 charge/discharge cycles. This study presents a feasible route to develop high-performing supercapacitor electrode materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.