Abstract

Bacterially mediated manganese(II) oxidation greatly affects the biogeochemical cycling of Mn and other elements. One species of bacteria that are capable of Mn(II) oxidation is the gamma-proteobacterium Pseudomonas putida GB-1. In this organism, Mn(II) oxidation begins in stationary phase on the outer surface of the cell, forming a layer of insoluble Mn(III,IV) oxides. A random transposon mutagenesis screen isolated 12 mutant strains of P. putida GB-1 that exhibited increased Mn(II) oxidation on solid media relative to wild type. In 8 out of the 12 strains, the transposon had inserted into a putative flagellar gene. Those 8 strains each had motility defects, thus the disrupted genes are part of the P. putida GB-1 flagellar regulon. The flagellar genes identified include putative structural components (FliC, FliD, FlgE, and FlgL) and regulatory proteins (FlgM and FleN). Deletion of either the FleN gene (fleN) or the overlapping gene fliA resulted in increased Mn(II) oxidation, while in-frame deletion of fliF, which encodes an essential component of the basal body, did not. In liquid media, the flagellar mutants exhibited delayed Mn(II) oxidation relative to wild type. These results suggest that bacterial Mn(II) oxidation is regulated in part by flagellar-mediated responses to the surface substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.