Abstract

The preparation and capacitance performances of Mn (OH)2@ secondary porous Ni nano-architecture foam (Mn (OH)2@SPNiNF) hybrids are systematically studied. The SPNiNF structure is simply obtained via a NiC2O4·2H2O in situ growing process on Ni foam surface, combined with a thermally treated process under Ar gas. Then, a layer of Mn (OH)2 film was electrodeposited onto the above SPNiNF sheet by applying a galvanostatical technique. It is shown that the SPNiNF sheet is composed of interconnected nanoparticles with a diameter range of 100–200 nm. The fabricated Mn (OH)2@SPNiNF electrode exhibited a high specific capacitance of 532.7 F g−1 and an areal capacitance of 906 m F cm−2 at a current density of 0.5 A g−1. The Mn (OH)2@SPNiNF electrode also exhibited a low ions diffusion resistance and a good cycling performance along with 85.7% specific capacitance retained after 5000 cycles. An asymmetric Mn (OH)2@SPNiNF //AC super capacitor exhibited an energy density of 69.1 Wh kg−1 at a power density of 0.6 kW kg−1. These results demonstrated that the Mn (OH)2@SPNiNF was a promising electrode material for supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.