Abstract
In this work, we present a Multi-Model Knowledge Extraction (MMKE) System which consists of two unstructured text extraction models (RelationSO model and SubjectRO model) based on a multi-task learning framework. Instead of recognizing entity first and then predicting relationships between entity pairs in previous works, MMKE detects subject and corresponding relationships before extracting objects to cope with the diverse object-type problem, overlapping problem and non-predefined relation problem. Our system accepts unstructured text as input, from which it automatically extracts triplets knowledge (subject, relation, object). More importantly, we incorporate a number of user-friendly extraction functionalities, such as multi-format uploading, one-click extractions, knowledge editing and graphical displays. The demonstration video is available at this link: https://youtu.be/HtOPJrGhSxk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.