Abstract

We identify and characterize MlaA, a novel protein, which is found in a conserved operon with Mre11 and Rad50 in archaeal genomes. MlaA is fused with Mre11 in Methanobacter thermoautotrophicus, suggesting the MlaA is functionally linked to the Mre11 complex. MlaA preferentially and cooperatively binds double-stranded and secondary structure containing DNA and has double-stranded but not single-stranded DNA-stimulated ATPase activity. Electron microscopy reveals that MlaA forms a 360-kDa hexameric ring structure with a central hole. Our data suggest that the archaeal Mre11 complex is associated with a novel hexameric ATPase that could be required for the processing of DNA double-stranded breaks and recombination intermediates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.