Abstract

Mixtures of common factor analyzers (MCFA), thought of as a parsimonious extension of mixture factor analyzers (MFA), have recently been developed as a novel approach to analyzing high-dimensional data, where the number of observations n is not very large relative to their dimension p. The key idea behind MCFA is to reduce further the number of parameters in the specification of the component-covariance matrices. An attractive and important feature of MCFA is to allow visualizing data in lower dimensions. The occurrence of missing data persists in many scientific investigations and often complicates data analysis. In this paper, we establish a computationally flexible EM-type algorithm for parameter estimation of the MCFA model with partially observed data. To facilitate the implementation, two auxiliary permutation matrices are incorporated into the estimating procedure for exactly extracting the location of observed and missing components of each observation. Practical issues related to the specification of initial values, model-based clustering and discriminant procedure are also discussed. Our methodology is illustrated through real and simulated examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.