Abstract

This paper investigates the theoretical analysis of hybrid nanofluid flow due to stretchable rotating disks system under the influence of non-uniform heat source or sink and thermal radiation. Two types of nanoparticles Copper (Cu) and Alumina (Al 2 O 3 ) mixed with the base fluid (ethylene glycol and water) in a ratio 50:50 were considered. The governing partial differential equations were considered in a cylindrical coordinate and Von Karman transformations were rendered into the system to obtain equivalent Ordinary differential equations. The resulting non-linear Ordinary differential equations together with their initial and boundary conditions were solved using finite differences method (FDM) with the aid of maple 18.0 software. The numerical result obtained shows the effect of Reynolds number, Radiation parameter, magnetic parameter and volume fraction of hybrid nanoparticles on the total Entropy generation and Bejan number. Also, the Skin friction Coefficient and Nusselt number at the lower and upper rotating disk were examined for different parameters and the effects of various parameters on the Axial, radial and tangential velocities and the thermal field presented graphically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.