Abstract

ABSTRACT Ferroelectric nematic phase is a novel state of matter, i.e. the sixth nematic liquid crystalline state, that represents high degrees of fluidity and polarity simultaneously. Thanks to the unique dielectric response and strong optical nonlinearity originated from the spontaneous polarisation, this new category of materials has begun to receive tremendous interests for developing liquid-based electrooptical applications such as capacitor and memory devices. Recently, based on a massive synthesis, we found the material state can appear in a wide range of molecular modifications under a necessary condition that the molecular dipole is strong enough. However, most of the reported materials exhibit the ferroelectric nematic state at high temperatures and are barely stabilized at room temperature. Here we demonstrate that a proper mixing of ferroelectric nematic materials can expand the temperature range of ferroelectric nematic phase from high temperature about 120ºC down to room temperature about 25ºC. Interestingly, we also show proper mixtures exhibit higher apparent dielectric permittivity and nonlinear optical response than the genuine material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.