Abstract

AbstractThe paper considers spin systems on the d‐dimensional integer lattice ℤd with nearest‐neighbor interactions. A sharp equivalence is proved between decay with distance of spin correlations (a spatial property of the equilibrium state) and rapid mixing of the Glauber dynamics (a temporal property of a Markov chain Monte Carlo algorithm). Specifically, we show that if the mixing time of the Glauber dynamics is O(n log n) then spin correlations decay exponentially fast with distance. We also prove the converse implication for monotone systems, and for general systems we prove that exponential decay of correlations implies O(n log n) mixing time of a dynamics that updates sufficiently large blocks (rather than single sites). While the above equivalence was already known to hold in various forms, we give proofs that are purely combinatorial and avoid the functional analysis machinery employed in previous proofs. © 2004 Wiley Periodicals, Inc. Random Struct. Alg., 2004

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.