Abstract

The influence of mixing and phase hold-ups on gas-producing fluidized-bed reactors was investigated and compared with an ideal flow reactor performance (CSTR). The liquid flow in the anaerobic fluidized bed reactor could be described by the classical axially dispersed plug flow model according to measurements of residence time distribution. Gas effervescence in the fluidized bed was responsible for bed contraction and for important gas hold-up, which reduced the contact time between the liquid and the bioparticles. These results were used to support the modeling of large-scale fluidized-bed reactors. The biological kinetics were determined on a 180-L reactor treating wine distillery wastewater where the overall total organic carbon uptake velocity could be described by a Monod model. The outlet concentration and the concentration profile in the reactor appeared to be greatly influenced by hydrodynamic limitations. The biogas effervescence modifies the mixing characteristics and the phase hold-ups. Bed contraction and gas hold-up data are reported and correlated with liquid and gas velocities. It is shown that the reactor performance can be affected by 10% to 15%, depending on the mode of operation and recycle ratio used. At high organic loading rates, reactor performance is particularly sensitive to gas effervescence effects. Copyright 1998 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.