Abstract

Reactive mass transport is a common phenomenon associated with groundwater pollution in the field of groundwater hydrology. For a reactive mass transport problem involving two different porosity regions, in which the porosity of the fluid-saturated porous medium has a constant distribution in the left region and an exponential distribution in the right region, theoretical solutions for both dimensional and dimensionless acid concentrations have been derived mathematically in the left region by using the interface condition substitution strategy. The fundamental idea behind this strategy is that the boundary condition at the entrance of the left region and the mathematical governing equation of the right region at the interface location between the left and right regions can be used to determine two independent constants involved in the theoretical solutions for the dimensional and dimensionless acid concentrations in the left region of the reactive mass transport system. Since both the acid concentration and its first derivative are known at the left boundary (i.e. the interface location) of the right region, it is possible to derive analytical expressions for the numerical solution (e.g. the finite element solution) in the right region by using the point-by-point marching strategy. The related theoretical results have demonstrated that the porosity distribution pattern in the right region of the system can have a significant influence on the dimensionless acid concentration distribution in the whole system, so that it affects not only the chemical dissolution front instability, but also the reactive mass transport process in an underground water system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.