Abstract
The vibrational relaxation of ions in low-density gases under the action of an electrostatic field is reproduced through a molecular dynamics simulation method. The vibration is treated though quantum mechanics and the remaining degrees of freedom are considered classical. The procedure is tested through comparison against analytic results for a two-dimensional quantum model and by studying energy exchange during binary ion-atom collisions. Finally, the method has been applied successfully to the calculation of the mobility and the vibrational relaxation rate of O2+ in Kr as a function of the mean collision energy using a model interaction potential that reproduces the potential minimum of a previously known ab initio potential surface. The calculation of the steady mean vibrational motion of the ions in (flow) drift tubes seems straightforward, though at the expense of large amounts of computer time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.