Abstract
Aqueous zinc-ion batteries have been regarded as a promising alternative to large-scale energy storage, due to associated low-cost, improved safety and environmental friendliness. However, a high-performance cathode material for both rate capability and specific capacity is still a challenge. One kind of the more promising candidates are sodium manganese oxide (NMO) materials, although they suffer from individual issues and need to be further improved. Herein, we present a novel mixed phase NMO material composed of nearly equal amounts of Na0.55Mn2O4 and Na0.7MnO2.05. The structured configuration with particle size of 200–500 nm is found to be beneficial towards improving the ion diffusion rate during the charge/discharge process. Compared with Na0.7MnO2.05 and Na0.55Mn2O4, the mixed phase NMO demonstrates an enhanced rate capability and excellent long-term cycling stability with a capacity retention of 83% after 800 cycles. More importantly, the system also delivers an impressive energy density and power density, as 378 W·h·kg−1 at 68.7 W·kg−1, or 172 W·h·kg−1 at 1705 W·kg−1. The superior electrochemical performance is ascribed to the fast Zn2+ diffusion rate because of a large ratio of capacitive contribution (63.9% at 0.9 mV·s−1). Thus, the mixed phase route provides a novel strategy to enhance electrochemical performance, enabling mixed phase NMO as very promising material towards large-scale energy-storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.