Abstract
A high-performance genetic algorithm for the optimal synthesis of trusses in discrete search spaces is developed. The main feature of the proposed computational procedure is the possibility of obtaining effective solutions without the violation of any constraint. In general, a varying of cross-sectional areas of bars, coordinates of nodes and topology system is provided. A group of individuals in the population can be accepted for further consideration only if all specified limitations have been fulfilled. Penalties that significantly change an objective function are introduced for other individuals. This mechanism of handling limitations provides for correction of inaccuracies that can introduce penalty functions for satisfying the problem conditions. Both a random change to the entire set of admissible values and a random choice of values among adjacent elements in this set can be performed during the mutation stage. Standard test examples for benchmark mathematical functions and trusses show high efficiency of the considered iterative procedure in terms of solution accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.