Abstract
Plants respond more efficiently when confronted with previous similar stress. In the case of pathogens, this memory of a previous infection confers resistance to future ones, which possesses a high potential for agricultural purposes. Some of the defense elements involved in this resistance phenotype, as well as epigenetic mechanisms participating in the maintenance of the memory, are currently known. However, the intracellular cascade from pathogen perception until the establishment of the epigenetic memory is still unexplored. Here, through the induction of mitochondrial stress by exogenous applications of Antimycin A in Arabidopsis thaliana plants, we discovered and characterized a role of mitochondrial stress in plant-induced resistance. Mitochondrial stress-induced resistance (MS-IR) is effective locally, systemically, within generation and transgenerationally. Mechanistically, MS-IR seems to be mediated by priming of defense gene transcription caused by epigenetic changes. On one hand, we observed an increment in the deposition of H3K4me3 (a positive epigenetic mark) at the promoter region of the primed genes, and, on the other hand, the DNA (de)methylation machinery seems to be required for the transmission of MS-IR to the following generations. Finally, we observed that MS-IR is broad spectrum, restricting the colonization by pathogens from different kingdoms and lifestyles. Altogether, this evidence positions mitochondria as a prominent organelle in environment sensing, acting as an integrating platform to process external and internal signals, triggering the appropriate response, and inducing the epigenetic memory of the stress to better react against future stressful conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.