Abstract
In the past 50years, testosterone (T) level in men has declined gradually. In this research, we discovered that acute exposure to 1-nitropyrene (1-NP), an environmental stressor from polluted atmosphere, reduced T contents by downregulating steroidogenic proteins in mouse testes and Leydig cells. Acute 1-NP exposure caused GCN2 activation and eIF2α phosphorylation, a marker of integrated stress, in mouse testes and Leydig cells. GCN2iB, a selective GCN2 kinase inhibitor, and siGCN2, the GCN2-targeted short interfering RNA, attenuated 1-NP-induced reduction of steroidogenic proteins in Leydig cells. Mechanistically, mitochondrial membrane potential was reduced and ATP5A, UQCRC2, SDHB and NDUFB8, four OXPHOS subunits, were reduced in 1-NP-exposed Leydig cells. Cellular mitochondrial respiration was inhibited and ATP production was reduced. Moreover, mitochondrial reactive oxygen species (ROS) were elevated in 1-NP-exposed Leydig cells. The interaction between GCN2 and uL10, a marker of ribosome stalling, was observed in 1-NP-exposed Leydig cells. MitoQ, a mitochondria-targeted antioxidant, attenuated1-NP-evoked ATP depletion and ribosome stalling in Leydig cells. Moreover, MitoQ suppressed 1-NP-caused GCN2 activation and eIF2α phosphorylation in Leydig cells. In addition, MitoQ alleviated 1-NP-induced steroidogenic inhibition in mouse testes. In conclusion, mitochondrial ROS-mediated ribosome stalling and GCN2 activation are partially involved in environmental stress-induced steroidogenic inhibition in testes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.