Abstract

Mitochondrion is the metabolic center and powerhouse of cells producing cellular energy which plays an important role in various physiological and pathophysiological processes. Recent research demonstrates that mitochondrial energy metabolism mediates the transmission of mitochondrial-nuclear signals through intermediate products which regulates epigenetic presentation of the chromatin and thereby affects gene expression. Epigenetic modification, a genetic regulatory model, is independent of DNA sequence and plays a major role in establishing and maintaining a specific gene's expression profile. Disorders of mitochondrial metabolism can induce epigenetic reprogramming which in turn initiates aging phenotypes and degenerative diseases. This review introduces recent research progress on the relationship between mitochondrial metabolism and chromatin-related epigenetic modification, discusses the role of mitochondrial stress in chromatin recombination, and suggests future research directions and their application in the study of age-related diseases such as cognitive dysfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.