Abstract

Chemo-resistance hinders treatment of patients with hepatocellular carcinoma. Although there are many models that can be found in the literature, the root mechanism to explain chemo-resistance is still not fully understood. To gain a better understanding of this phenomenon, a chemo-resistant line, R-HepG2, was developed from a chemo-sensitive HepG2 line through an exposure of doxorubicin (DOX). The R-HepG2 exhibited a cancer stem cell (CSC) phenotype with an over-expression of P-glycoprotein (P-gp), conferring it a significant enhancement in drug efflux and survival. With these observations, we hypothesize that metabolic alteration in this drug-resistant CSC is the root cause of chemo-resistance. Our results show that, unlike other metabolic-reprogrammed CSCs that exhibit glycolytic phenotype described by the “Warburg effect”, the R-HepG2 was metabolically quiescent with glucose independence, high metabolic plasticity, and relied on glutamine metabolism via the mitochondria for its chemo-resistance Intriguingly, drug efflux by P-gp in R-HepG2 depended on the mitochondrial ATP fueled by glutamine instead of glycolytic ATP. Armed with these observations, we blocked the glutamine metabolism in the R-HepG2 and a significant reduction of DOX efflux was obtained. We exploited this metabolic vulnerability using a combination of DOX and metformin in a glutamine-free condition to target the R-HepG2, resulting in a significant DOX sensitization. In conclusion, our findings highlight the metabolic modulation of chemo-resistance in CSCs. We delineate the altered metabolism that drives chemo-resistance and offer a new approach to target this CSC through metabolic interventions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.