Abstract

Apoptosis plays a critical role for the development of a variety of cardiac diseases. Cardiomyocytes are enriched in mitochondria, while mitochondrial fission can regulate apoptosis. The molecular mechanism governing cardiomyocyte apoptosis remain to be fully elucidated. Our results showed that Smac/DIABLO is necessary for apoptosis in cardiomyocytes, and it is released from mitochondria into cytosol in response to apoptotic stimulation. Smac/DIABLO release is a consequence of mitochondrial fission mediated by dynamin-related protein-1 (Drp1). Upon release Smac/DIABLO binds to X-linked inhibitor of apoptosis protein (XIAP), resulting in the activation of caspase-9 and caspase-3. Their activation is a prerequisite for the initiation of apoptosis because the administration of z-LEHD-fmk and z-DQMD-fmk, two relatively specific inhibitors for caspase-9, and caspase-3, respectively, could significantly attenuate apoptosis. Smac/DIABLO release could not be blocked by these caspase inhibitors, indicating that it is an event upstream of caspase activation. ARC (apoptosis repressor with caspase recruitment domain), an abundantly expressed apoptotic repressor in cardiomyocytes, could inhibit mitochondrial fission and Smac/DIABLO release. Our data reveal that Smac/DIABLO is a target of ARC in counteracting apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.