Abstract

The pathology of Alzheimer's disease (AD) is characterized by amyloid plaques (aggregates of amyloid-β (Aβ)) and neurofibrillary tangles (aggregates of tau) and is accompanied by mitochondrial dysfunction, but the mechanisms underlying this dysfunction are poorly understood. In this review, we discuss the critical role of mitochondria and the close inter-relationship of this organelle with the two main pathological features in the pathogenic process underlying AD. Moreover, we summarize evidence from AD post-mortem brain as well as cellular and animal AD models showing that Aβ and tau protein trigger mitochondrial dysfunction through a number of pathways, such as impairment of oxidative phosphorylation, elevation of reactive oxygen species production, alteration of mitochondrial dynamics, and interaction with mitochondrial proteins. A vicious cycle as well as several vicious circles within the cycle, each accelerating the other, can be drawn, emphasizing the synergistic deterioration of mitochondria by tau and Aβ.

Highlights

  • With the increasing average lifespan of humans, Alzheimer’s disease (AD) is the most common neurodegenerative disorder among elderly individuals

  • Using neuronal PC12 cells, we found that expression of one known amyloid precursor protein (APP) gene mutation, the ‘Swedish APP (APPSw)’ double mutation (KM670/671NL), leads to an enhanced vulnerability of these cells to oxidative stress and mitochondrial dysfunction, mediated by different caspases and the stress-activated protein kinase pathway [34,35,36] (Figure 3)

  • Our findings indicate that mitochondria in tau transgenic pR5 mice display enhanced vulnerability towards Aβ insult in vitro [57,65], suggesting a synergistic action of tau and Aβ pathologies

Read more

Summary

Introduction

With the increasing average lifespan of humans, Alzheimer’s disease (AD) is the most common neurodegenerative disorder among elderly individuals. In another transgenic mouse model, APPS/L, which combines the Swedish (K670M/N671L) with the London (V717I) mutation in the human APP gene, an early energy dysfunction was found as shown by a decreased mitochondrial membrane potential as well as decreased ATP levels at 3 months of age, when Aβ levels are elevated but plaques are not yet present [5,14,37].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.