Abstract

Mitochondria are highly dynamic organelles that continuously undergo two opposite processes, fission and fusion. Mitochondrial dynamics influence not only mitochondrial morphology, but also mitochondrial biogenesis, mitochondrial distribution within the cell, cell bioenergetics, and cell injury or death. Drp1 mediates mitochondrial fission, whereas Mfn1/2 and Opa1 control mitochondrial fusion. Neurons require large amounts of energy to carry out their highly specialized functions. Thus, mitochondrial dysfunction is a prominent feature in a variety of neurodegenerative diseases. Mutations of Mfn2 and Opa1 lead to neuropathies such as Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. Moreover, both Aβ peptide and mutant huntingtin protein induce mitochondrial fragmentation and neuronal cell death. In addition, mutants of Parkinson's disease-related genes also show abnormal mitochondrial morphology. This review highlights our current understanding of abnormal mitochondrial dynamics relevant to neuronal synaptic loss and cell death in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.