Abstract
Mitochondria play an important role in the homeostasis of intracellular Ca(2+) and regulate its availability for exocytosis. Inhibitors of mitochondria Ca(2+) uptake such as protonophore CCCP potentiate the secretory response to a depolarizing pulse of K(+). Exposure of cells to agents that directly (cytochalasin D, latrunculin B) or indirectly (PMA) disrupt cortical F-actin networks also potentiate the secretory response to high K(+). The effects of cytochalasin D and CCCP on secretion were additive whereas those of PMA and CCCP were not; this suggests different mechanisms for cytochalasin D and CCCP and a similar mechanism for PMA and CCCP. Mitochondria were the site of action of CCCP, because the potentiation of secretion by CCCP was observed even after depletion of Ca(2+) from the endoplasmic reticulum. CCCP induced a small increase in the cytosolic Ca(2+) concentration ([Ca(2+)](c)) that was not modified by the protein kinase C (PKC) inhibitor chelerythrine. Both CCCP and PMA induced cortical F-actin disassembly, an effect abolished by chelerythrine. In addition, rotenone and oligomycin A, two other mitochondrial inhibitors, also evoked cortical F-actin disassembly and potentiated secretion; again, these effects were blocked by chelerythrine. CCCP also enhanced the phosphorylation of PKC and myristoylated alanine-rich C kinase substance (MARCKS), and these were also inhibited by chelerythrine. The results suggest that the rapid sequestration of Ca(2+) by mitochondria would protect the cell from an enhanced PKC activation and cortical F-actin disassembly, thereby limiting the magnitude of the secretory response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.