Abstract

The homeostasis of mitochondrial calcium ([Ca2+]mt) in oocytes plays a critical role in maintaining normal reproductive cellular progress such as meiosis. However, little is known about the association between [Ca2+]mt homeostasis and early embryonic development. Two in vitro mouse MII oocyte models were established by using a specific agonist or inhibitor targeting mitochondrial calcium uniporters (MCU) to upregulate or downregulate [Ca2+]mt concentrations. The imbalance of [Ca2+]mt in MII oocytes causes mitochondrial dysfunction and morphological abnormity, leading to an abnormal spindle/chromosome structure. Oocytes in drug-treated groups are less likely to develop into blastocyst during in vitro culture. Abnormal [Ca2+]mt concentrations in oocytes hindered epigenetic modification and regulated mitogen-activated protein kinase (MAPK) signaling that is associated with gene expression. We also found that MAPK/ERK signaling is regulating DNA methylation in MII oocytes to modulate epigenetic modification. These data provide a new insight into the protective role of [Ca2+]mt homeostasis in early embryonic development and also demonstrate a new mechanism of MAPK signaling regulated by [Ca2+]mt that influences epigenetic modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.