Abstract
Earlier we found that in isolated rat liver mitochondria the reversible opening of the mitochondrial cyclosporin A-insensitive pore induced by low concentrations of palmitic acid (Pal) plus Ca(2+) results in the brief loss of Deltapsi [Mironova et al., J Bioenerg Biomembr (2004), 36:171-178]. Now we report that Pal and Ca(2+), increased to 30 and 70 nmol/mg protein respectively, induce a stable and prolonged (10 min) partial depolarization of the mitochondrial membrane, the release of Ca(2+) and the swelling of mitochondria. Inhibitors of the Ca(2+) uniporter, ruthenium red and La(3+), as well as EGTA added in 10 min after the Pal/Ca(2+)-activated pore opening, prevent the release of Ca(2+) and repolarize the membrane to initial level. Similar effects can be observed in the absence of exogeneous Pal, upon mitochondria accumulating high [Sr(2+)], which leads to the activation of phospholipase A(2) and appearance of endogenous fatty acids. The paper proposes a new model of the mitochondrial Ca(2+) cycle, in which Ca(2+) uptake is mediated by the Ca(2+) uniporter and Ca(2+) efflux occurs via a short-living Pal/Ca(2+)-activated pore.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.