Abstract

The extent and role of mitochondrial DNA damage in the mechanism of action of sulphur mustard (SM) is poorly understood. In this study, a combination of quantitative polymerase chain reaction and Southern hybridization was used to determine the levels of both total DNA adducts and DNA interstrand crosslinks in genomic and mitochondrial DNA isolated from normal human epidermal keratinocytes exposed to SM. The formation of both types of lesions occurred simultaneously in nuclear and mitochondrial DNA, however, SM produced significantly higher levels of both total adducts and crosslinks in genomic DNA than mitochondrial DNA. The total lesion frequency was 0.45 lesions/kb per 100 μM SM in the DHFR gene and 0.12 lesions/kb per 100 μM SM in the mitochondrial segment. Interstrand crosslinks occurred at a frequency of 0.28 crosslinks/10 kb per 100 μM SM in the DHFR gene and 0.05 crosslinks/10 kb per 100 μM SM in the mitochondrial segment. DNA interstrand crosslinks are thought to be the critical lesion produced by similar bi-functional alkylating agents. However, the levels of DNA cross-linking revealed in this study show that even at vesicating doses of SM mitochondrial DNA is still largely free of cross-links and the predominant form of DNA damage contributing to cell death occurs in the nucleus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.