Abstract

In order to investigate the decrease in total metal contents and to mitigate the availability and toxicity of metals from farmland near a lead mining area, a combination of two effective soil washing and eco-friendly stabilization technologies was applied in current research. The pre-treatment was performed with three types of agents including Ethylenediaminetetraacetic acid (EDTA), citric acid (CA), and mixture of hydroxylamine hydrochloride and citric acid (HA)) and the post-treatment stabilization was adopted using four rich-carbon organic waste amendments (cow manure compost (CMC), vermicompost (VC), urban sewage sludge (SS), and sludge-derived biochar (BIO)). Furthermore, the fate of residual metals (leachability, plant-availability, bioaccessibility, and chemical distribution), soil quality indicators (phytotoxicity and enzyme activities), and some soil physicochemical properties were examined before and after the two-steps remediation. The soil washing, especially using HA and CA agents, dramatically increased the labile metals and negatively changed the soil microbial activity. The two-month stabilization with SS, BIO, and VC resulted in a significant control of the leachability and plant-availability of residual Zn and Pb. However, the post-treatment was only slightly immobilized of Cd. The amendments affected the restoration of soil pH and organic carbon as well as the improvement of available nutrients. Compared to the other amendments that caused restrictions, the SS significantly restored the enzyme activities. With the exception of CMC, the SS, VC, and BIO, indicated higher germination rate and growth of wheat were also obtained. This study reveal the ability of the complementary role of stabilization with soil washing to reduce metal toxicity and confirm the usefulness of municipal and animal wastes in enhancing soil and environmental qualities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.