Abstract
The present work presents a nanocomposite preformed particle gel for conformance control in mature oilfields. This product was observed to have a better performance than conventional hydrogels without nanomaterials. Preformed particle hydrogel was designed by the reaction of monomer, initiator, cross-linker, additives, and sodium montmorillonite nanomaterial, whereas conventional hydrogel is designed from just monomer, initiator, cross-linker and additives. The presence of nanomaterial in hydrogel design affords it tremendous improvement in nanocomposite gel properties and behaviour compared to conventional hydrogels without any nanomaterial. Additionally, swelling performance, post-degraded gel viscosity, and long-term thermal resistance of nanocomposite gel increased by several orders of magnitude compared to hydrogels with no nanomaterial. Environmental scanning electron microscopy (ESEM) revealed the presence of a very dense 3D network compared to hydrogels with no nanomaterial. On incorporation of nanomaterial, increase in gel strength of up to 600% was observed. Thus, they are potential replacements for existing preformed particle gels in mitigating permeability variations in mature reservoirs. [Received: March 14, 2014; Accepted: March 2, 2015]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Oil, Gas and Coal Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.