Abstract

As the world's largest industrial producer, China's deep decarbonization of industrial process-related greenhouse gas (GHG) emissions is essential in fulfilling the goal of reaching net zero emissions. Previous studies focused more on emission inventories and abatement technologies, however, final demand also plays a significant role in driving China's industrial process-related GHG emissions. Based on the environmentally extended input-output analysis and structural path analysis, this study explores detailed industrial process-related GHG emissions inventory and investigates critical supply chain paths of 17 products and 16 types of GHG emissions. The results show that industrial process-related GHG emissions reached 1887.1 Mt CO2-eq in 2018, of which more than three-fifths was induced by fixed capital formation. The entirety of the Construction sector amounted to 54.6% of the total embodied industrial process-related GHG emissions. After examining the embodied industrial process-related GHG emissions paths, critical economic sectors such as Construction, Nonmetallic Mineral, Chemical, and the paths of “Nonmetallic Mineral → Construction → Fixed capital formation and Nonmetallic Mineral → Nonmetallic Mineral → Construction → Fixed capital formation” were identified as the main contributor. In considering of the enormous challenges during mitigating GHG emissions from process-related industries, it is essential to identify and optimize critical supply chains, which provides new insights into China's industrial process transition towards a low-carbon economy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.