Abstract

The CO2/N2 separation performances of facilitated transport membranes (FTMs) containing aminoacid salts as mobile carriers were characterized under dilute feed gases with 0.05–20% CO2. At a reduced CO2 partial pressure, the carrier saturation in the FTMs was mitigated, which enhanced both the CO2 permeance and CO2/N2 selectivity. The best FTM containing 2-(1-piperazinyl)ethylamine sarcosinate exhibited an uprising CO2 permeance from 1968 to 3822 GPU and an improved CO2/N2 selectivity from 249 to 472 with reducing CO2 content from 1% to 0.1%. The feasibility of this FTM is exemplified by designing a two-stage enriching membrane cascade to further remove 90% of the CO2 in a residual coal flue gas containing 1.75% CO2. Techno-economic analysis indicates a low capture cost of $83.8/tonne. The marginal costs beyond 90% capture are also evaluated for a variety of residual flue gases, indicating that the FTM-based capture from the coal or cement plant residual flue gas is more cost effective than direct air capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.