Abstract

The paper discusses mission abort and rescue strategies for multistate systems with different levels of performance. A system operates in a random environment modeled by the non-homogeneous Poisson process of shocks. With each shock, the state of a system stochastically deteriorates gradually moving to the state of a total failure. To prevent this event and to increase a system survival probability, a mission can be aborted and a rescue procedure can be activated. The number of experienced shocks is a decision parameter for the corresponding optimization problem that aims at maximizing the mission success probability subject to providing the desired level of survival probability. A detailed numerical example illustrates our findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.