Abstract

Understanding how DNA polymerases control fidelity requires elucidation of the mechanisms of matched and mismatched dNTP incorporations. Little is known about the latter because mismatched complexes do not crystallize readily. In this report, we employed small-angle X-ray scattering (SAXS) and structural modeling to probe the conformations of different intermediate states of mammalian DNA polymerase β (Pol β) in its wild-type and an error-prone variant, I260Q. Our structural results indicate that the mismatched ternary complex lies in-between the open and the closed forms, but more closely resembles the open form for WT and the closed form for I260Q. On the basis of molecular modeling, this over-stabilization of mismatched ternary complex of I260Q is likely caused by formation of a hydrogen bonding network between the side chains of Gln260, Tyr296, Glu295 and Arg258, freeing up Asp192 to coordinate MgdNTP. These results argue against recent reports suggesting that mismatched dNTP incorporations follow a conformational path distinctly different from that of matched dNTP incorporation, or that its conformational closing is a major contributor to fidelity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.