Abstract

Herein, a mismatch-fueled catalytic hairpin assembly (MCHA) was rationally engineered, which possessed higher amplification efficiency and faster rate than catalytic hairpin assembly (CHA). Once input target microRNA-21(miRNA-21) triggers the MCHA, the hairpin DNA H1 will be opened to form the duplex H1-miRNA-21, then the mismatched hairpin DNA H2 could easily hybridize with H1-miRNA-21 to generate duplex H1–H2 and the miRNA-21 could be released to enter next cycle, thus generating amounts of output products. Impressively, the MCHA realizes a pretty shorter complete reaction time of 40 min and quite higher amplification efficiency of 9.56 × 106, which dramatically transcended the barrier: low amplification times and long reaction time in traditional CHA. As a proof of the concept, the elaborated MCHA as a hyper-efficiency and high-speed DNA signal-magnifier was successfully applied in ultrasensitive and rapid detection of miRNA-21 with the detection limit of 0.17 fM, which exploited an ingenious nucleic acid signal amplification technique for sensitive and fast detection of biomarkers in biosensing assay and clinic diagnose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.