Abstract

The observation that the chemical equilibrium between the combustion products of solid propellant samples within static calorimeters is unexpectedly freezing at high temperatures is proved through a general numerical simulation of the isochoric cooling with chemical reactions between the gaseous products. A proprietary, direct linearization method of thermochemical computation is used that enables following any chemical reaction in equilibrium with high convergence. The observed chemical freezing within calorimeters is proved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.