Abstract
Dinoflagellates have been shown to express miRNA by bioinformatics and RNA blot (Northern) analyses. However, it is not yet known if miRNAs are able to alter gene expression in this class of organisms. We have assessed the possibility that miRNA may mediate circadian regulation of gene expression in the dinoflagellate Lingulodinium polyedrum using the Luciferin Binding Protein (LBP) as a specific example. LBP is a good candidate for regulation by miRNA since mRNA levels are constant over the daily cycle while protein synthesis is restricted by the circadian clock to a period of several hours at the start of the night phase. The transcriptome contains a potential DICER and an ARGONAUTE, suggesting the machinery for generating miRNAs is present. Furthermore, a probe directed against an abundant Symbiodinium miRNA cross reacts on Northern blots. However, L. polyedrum has no small RNAs detectable by ethidium bromide staining, even though higher plant miRNAs run in parallel are readily observed. Illumina sequencing of small RNAs showed that the majority of reads did not have a match in the L. polyedrum transcriptome, and those that did were almost all sense strand mRNA fragments. A direct search for 18–26 nucleotide long RNAs capable of forming duplexes with a 2 base 3’ overhang detected 53 different potential miRNAs, none of which was able to target any of the known circadian regulated genes. Lastly, a microscopy-based test to assess synthesis of the naturally fluorescent LBP in single cells showed that neither double-stranded nor antisense lbp RNA introduced into cells by microparticle bombardment prior to the time of LBP synthesis were able to reduce the amount of LBP produced. Taken together, our results indicate that circadian control of protein synthesis in L. polyedrum is not mediated by miRNAs.
Highlights
The circadian rhythm of bioluminescence in the marine dinoflagellate Lingulodinium polyedrum involves control over the synthesis of two proteins involved in the light emitting reaction, luciferase and luciferin binding protein (LBP) [1]
We conclude that while miRNAs do appear to be present in L. polyedrum they are found at lower levels than in higher plants
Because of the apparent paucity of small RNAs in L. polyedrum, we tested if the Argonaute and Dicer proteins required for miRNA synthesis were present in the transcriptome
Summary
The circadian rhythm of bioluminescence in the marine dinoflagellate Lingulodinium polyedrum involves control over the synthesis of two proteins involved in the light emitting reaction, luciferase and luciferin binding protein (LBP) [1]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.