Abstract

Chemoresistance prevents the curative cancer chemotherapy and presents a formidable challenge for both cancer researchers and clinicians. We have previously shown that miR-193a-3p promotes the multi-chemoresistance of bladder cancer cells via repressing its three target genes: SRSF2, PLAU and HIC2. Here, we showed that as a new direct target, the homeobox C9 (HOXC9) gene also executes the promoting effect of miR-193a-3p on the bladder cancer chemoresistance from a systematic study of multi-chemosensitive (5637) and resistant (H-bc) bladder cancer cell lines in both cell culture and tumor-xenograft/nude mice system. Paralleled with the changes in the drug-triggered cell death, the activities of both DNA damage response and oxidative stress pathways were drastically altered by a forced reversal of miR-193a-3p or HOXC9 levels in bladder cancer cells. In addition to a new mechanistic insight, our results provide a set of the essential genes in the miR-193a-3p/HOXC9/DNA damage response/oxidative stress pathway axis as the diagnostic targets for the guided anti-bladder cancer chemotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.