Abstract

The present research aimed to investigate the effects and mechanisms of microRNA (miR)-141-3p on pulmonary fibrosis of acute respiratory distress syndrome (ARDS). A rat ARDS model was established by the intratracheal drip of 10mg/kg lipopolysaccharide (LPS). miR-141-3p and Kelch-like ECH-associated protein 1 (Keap1) expression was detected using RT-qPCR assay. Inflammatory factors in bronchoalveolar lavage fluid (BALF) and lung tissues were measured with enzyme-linked immunosorbent assay (ELISA). Lung fibrosis was evaluated using Masson's trichrome staining and hydroxyproline assay kits. Tissue oxidative stress marker levels were assessed by a commercial kit. Protein variations in the EMT pathway and Keap1/nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway were investigated by Western blot analysis. Targeting relationship verified by dual-luciferase reporter assay. The expression of miR-141-3p was significantly upregulatedin LPS-induced ARDS rats, while Keap1 was downregulated. Overexpression of miR-141-3p decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, superoxide dismutase (SOD), and glutathione (GSH) while elevating malondialdehyde (MDA) expressionin LPS-induced ARDS rats. Elevation of miR-141-3p reduced fibrosis scores, enhanced E-cadherin protein expression, and decreased vimentin and α-SMA protein expressionin LPS-induced ARDS rats. This elevation of miR-141-3p also upregulated Nrf2, heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxido-reductase-1 (NQO1) proteinslevels. Moreover, Keap1 overexpression reversed the inhibitory effects of miR-141-3p on LPS-triggered inflammation, oxidative stress, and fibrosis. miR-141-3p may attenuate inflammation and oxidative stress-induced pulmonary fibrosis in ARDS via the Keap1/Nrf2/ARE signaling pathway. Our study provides new ideas for the treatment of ARDS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.