Abstract

A genome-wide screen had previously shown that knocking down miR-98 and let-7g, two miRNAs of the let-7 family, leads to a dramatic increase in terminal myogenic differentiation. In the present paper, we report that a transcriptomic analysis of human myoblasts, where miR-98 was knocked down, revealed that approximately 240 genes were sensitive to miR-98 depletion. Among these potential targets of miR-98, we identified the transcriptional repressor E2F5 and showed that it is a direct target of miR-98. Knocking down simultaneously E2F5 and miR-98 almost fully restored normal differentiation, indicating that E2F5 is involved in the regulation of skeletal muscle differentiation. We subsequently show that E2F5 can bind to the promoters of two inhibitors of terminal muscle differentiation, ID1 (inhibitor of DNA binding 1) and HMOX1 (heme oxygenase 1), which decreases their expression in skeletal myoblasts. We conclude that miR-98 regulates muscle differentiation by altering the expression of the transcription factor E2F5 and, in turn, of multiple E2F5 targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.