Abstract

BackgroundOvarian cancer is the leading lethal gynecological cancer and is generally diagnosed during late-stage presentation. In addition, patients with ovarian cancer still face a low 5-year survival rate. Thus, innovative molecular targeting agents are required to overcome this disease. The present study aimed to explore the function of miR-362-3p and the underlying molecular mechanisms influencing ovarian cancer progression.MethodsThe expression levels of miR-362-3p were determined using qRT-PCR. Gain-of-function and loss-of-function methods were used to detect the effects of miR-362-3p on cell proliferation, cell migration, and tumor metastasis in ovarian cancer. A luciferase reporter assay was performed to confirm the potential target of miR-362-3p, and a rescue experiment was employed to verify the effect of miR-362-3p on ovarian cancer by regulating its target gene.ResultsmiR-362-3p was significantly downregulated in ovarian cancer tissues and cell lines. In vitro, our data showed that miR-362-3p suppressed cell proliferation and migration. In vivo, miR-362-3p inhibited ovarian cancer growth and metastasis. Mechanistically, SERBP1 was identified as a direct target and functional effector of miR-362-3p in ovarian cancer. Moreover, SERBP1 overexpression rescued the biological function of miR-362-3p.ConclusionsOur data reveal that miR-362-3p has an inhibitory effect on ovarian cancer. miR-362-3p inhibits the development and progression of ovarian cancer by directly binding its target gene SERBP1.

Highlights

  • Ovarian cancer is the leading lethal gynecological cancer and is generally diagnosed during latestage presentation

  • It has been estimated that ovarian cancer accounts for 2.5% of female cancer occurrences and 5% of cancerrelated deaths [1]

  • Results miR-362-3p is downregulated in ovarian cancer tissues and cell lines To assess the expression of ovarian cancer-related miRNAs that may have a role in ovarian cancer tumorigenicity, the expression data of the disease-related miRNAs from the Gene Expression Omnibus (GEO) database (GSE47841) were analyzed first

Read more

Summary

Objectives

We aimed to investigate the possible function of miR-362-3p in ovarian cancer

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.