Abstract

Here, we aimed to investigate the biological roles and the regulatory mechanisms of miR-335-3p in acute myeloid leukemia (AML). We first found miR-335-3p was significantly downregulated in blood samples from leukemia patients and cell lines using reverse transcription quantitative polymerase chain reaction. Through CCK-8 assay and flow cytometry, we observed that miR-335-3p overexpression significantly inhibited cell proliferation and induced cell cycle G0/G1 arrest and apoptosis in AML cell lines (THP-1 and U937). Moreover, miR-335-3p directly targets EIF3E and negatively regulated its expression. More importantly, EIF3E overexpression reversed the effects of miR-335-3p on cell proliferation, G1/S transition, and apoptosis. Furthermore, miR-335-3p overexpression obviously downregulated the expression of CDK4, Cyclin D1, and Bcl-2, while upregulated the expression of p21 and Bad, which were significantly rescued by the cotransfection of pcDNA3.1-EIF3E. Collectively, our study proposes that miR-335-3p/EIF3E axis could be a promising therapeutic target to mitigate the progression of AML.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.