Abstract

Vagus nerve stimulation (VNS) exerts neuroprotective effects against cerebral ischemia/reperfusion (I/R) injury and modulates redox status, potentially through the activity of miR-210, an important microRNA that is regulated by hypoxia-inducible factor and Akt-dependent pathways. The aim of this study was to determine the mechanisms of VNS- and miR-210-mediated hypoxic tolerance. Male Sprague-Dawley rats were preconditioned with a miR-210 antagomir (A) or with an antagomir control (AC), followed by middle cerebral artery occlusion and VNS treatment. The animals were divided into eight groups: sham I/R, I/R, I/R+AC, I/R+A, sham I/R+VNS, I/R+VNS, I/R+VNS+AC, and I/R+VNS+A. Activation of the endogenous cholinergic a7 nicotinic acetylcholine receptor (a7nAchR) pathway was identified using double immunofluorescence staining. miR-210 expression was measured by PCR. Behavioral outcomes, infarct volume, and neuronal apoptosis were observed at 24h following reperfusion. Markers of oxidative stress were detected using ELISA. Rats treated with VNS showed increased miR-210 expression as well as decreased apoptosis and antioxidant stress responses compared with the I/R group; these rats also showed increased p-Akt protein expression and significantly decreased levels of cleaved caspase 3 in the ischemic penumbra, as measured by western blot and immunofluorescence analyses, respectively. Strikingly, the beneficial effects of VNS were attenuated following miR-210 knockdown. In conclusion, our results indicate that miR-210 is a potential mediator of VNS-induced neuroprotection against I/R injury. Our study highlights the neuroprotective potential of VNS, which, to date, has been largely unexplored. Since approved by the FDA in 1997, vagus nerve stimulation (VNS) has proven to be a safe and effective treatment for refractory epilepsy and resistant depression. Recent studies have found that VNS also provided neuroprotective effects against ischemic injury in a rat stroke model. We showed that miR-210 played an important role in the antioxidant stress and anti-apoptosis responses induced by VNS. This is the first report showing the effects of VNS at the mRNA level. Therefore, VNS represents a promising candidate treatment for ischemic stroke patients. Schematic view of the role of miR210 mediated in the protective effects of the VNS on the acute cerebral ischemia. VNS acts to activate neuronal and astrocytes a7nAchR , inhibits the apoptosis and oxidant stress responses possibly associated with increased Akt phosphorylation and miR210 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.