Abstract

Fragile X-related protein 1 (FXR1) is a member of the fragile X family of RNA-binding proteins, which regulates a number of neurological and neuropsychiatric disorders such as fragile X syndrome, and is expected as a novel therapeutic target for some psychiatric diseases. However, it is unknown how FXR1 changes and functions in post-traumatic stress disorder (PTSD), a common mental disorder related to trauma and stressor. In this study, we characterized the expression pattern of FXR1 in the pathophysiological process of PTSD and further investigated the possible mechanism underlying these changes by finding an upstream regulator, namely miRNA-132 (miR-132). Furthermore, we verified whether miR-132 silence had an effect on the PTSD-like behaviors of single prolonged stress (SPS) rats through open field test, forced swimming test, and water maze test. At last, we examined the expression levels of PSD95 and synapsin I in the hippocampus, which was one of the key brain regions associated with PTSD. We showed that the levels of FXR1 and fragile X mental retardation protein (FMRP), an autosomal homolog of FXR1, were decreased in the hippocampus of PTSD rats, but the levels of PSD95 and synapsin I were increased, which could be reversed by downregulation of miR-132. The results revealed that miR-132 could modulate PTSD-like behaviors in rats following SPS through regulating FXR1 and FMRP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.