Abstract
BackgroundOsteoporosis (OP) is an age-related systemic bone disease. MicroRNAs (miRNAs) are involved in the regulation of osteogenic differentiation. The purpose of this study was to explore the role and mechanism of miR-1249-5p for promoting osteogenic differentiation of adipose-derived stem cells (ADSCs).MethodsGSE74209 dataset was retrieved from NCBI Gene Expression Omnibus (GEO) database and performed bioinformatic analyses. OP tissue and healthy control tissues were obtained and used for RT-PCR analyses. ADSCs were incubated with miR-1249-5p mimic, inhibitor and corresponding negative control (NC), alkaline phosphatase (ALP) staining, and Alizarin Red Staining (ARS) were then performed to assess the role of miR-1249-5p for osteogenesis of ADSCs. Targetscan online website and dual-luciferase reporter assay were performed to verify that the 3′-UTR of PDX1 mRNA is a direct target of miR-1249-5p. RT-PCR and western blot were also performed to identify the mechanism of miR-1249-5p for osteogenesis of ADSCs.ResultsA total of 170 differentially expressed miRNAs were selected, among which, 75 miRNAs were downregulated and 95 miRNAs were upregulated. Moreover, miR-1249-5p was decreased in OP patients, while showed a gradual increase with the extension of induction time. miR-1249-5p mimic significantly increased osteogenic differentiation capacity and p-PI3K and p-Akt protein levels. Luciferase activity in ADSCs co-transfected of miR-1249-5p mimic with PDX1-WT reporter plasmids was remarkably decreased, but there was no obvious change in miR-1249-5p mimic with PDX1-MUT reporter plasmids co-transfection group. Overexpression PDX1 could partially reverse the promotion effects of miR-1249-5p on osteogenesis of ADSCs.ConclusionIn conclusion, miR-1249-5p promotes osteogenic differentiation of ADSCs by targeting PDX1 through the PI3K/Akt signaling pathway.
Highlights
Osteoporosis (OP) is an age-related systemic bone disease
Expressed miRNAs in GSE74209 The miRNA array data of 6 postmenopausal women with osteoporosis and 6 healthy postmenopausal women in the GSE74209 dataset was retrieved from NCBI Gene Expression Omnibus (GEO) database
GO molecular function (MF) terms were mainly enriched in protein threonine/ tyrosine kinase activity, auxiliary transport protein activity, receptor signaling protein serine/threonine kinase
Summary
Osteoporosis (OP) is an age-related systemic bone disease. MicroRNAs (miRNAs) are involved in the regulation of osteogenic differentiation. The purpose of this study was to explore the role and mechanism of miR1249-5p for promoting osteogenic differentiation of adipose-derived stem cells (ADSCs). Osteoporosis (OP) is an age-related systemic bone disease characterized by reduced bone mass and, damaged bone microstructure, which eventually leads to reduced bone strength and prone to fracture [1, 2]. Senile osteoporosis is ADSCs can play the function of multidirectional differentiation and self-renewal, and can differentiate into osteoblasts, chondrocytes, adipocytes, nerve cells, and myoblasts under different conditions [5, 6]. One possible method to promote osteogenic differentiation is to use of microRNAs (miRNAs) to promote osteogenic differentiation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.