Abstract

This paper explains the mipfp package for R with the core functionality of updating an d-dimensional array with respect to given target marginal distributions, which in turn can be multi-dimensional. The implemented methods include the iterative proportional fitting procedure (IPFP), the maximum likelihood method, the minimum chi-square and least squares procedures. The package also provides an application of the IPFP to simulate data from a multivariate Bernoulli distribution. The functionalities of the package are illustrated through two practical examples: the update of a 3-dimensional contingency table to match the targets for a synthetic population and the estimation and simulation of the joint distribution of the binary attribute impaired pulmonary function as used by Qaqish, Zink, and Preisser (2012).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.