Abstract
An advanced transmutation method is suggested that the long-lived Minor Actinides (MAs) in the spent fuel can be efficiently transmuted in the candidate Accident Tolerant Fuel (ATF). The transmutation of MAs is investigated through the Monte Carlo simulations in two potential fuel-claddings of ATF, U3Si2-FeCrAl and U3Si2-SiC. The critical loadings of MAs are determined through the Linear Reactivity Model (LRM) in order to keep the same reactivity as the current UO2-zircaloy system at the End of Cycle (EOC). In all cases, excellent transmutation efficiencies are found for the most important three MAs, 237Np, 241Am, and 243Am, of which the total transmutation rates are around 60%, 90%, and 60%, respectively. If only the longest-lived isotope 237Np is considered, one U3Si2-SiC assembly can transmute 237Np from six normal assemblies. The loading of MAs has little influences on the neutronic properties, such as the power distributions inside an assembly and inside a fuel rod. The transmutation of MAs in the ATF assembly is shown to be more efficient and safe comparing with the normal assembly, while other important properties are kept, such as the cycle length and the power distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.