Abstract
Many criminals exploit the convenience of anonymity in the cyber world to conduct illegal activities. E-mail is the most commonly used medium for such activities. Extracting knowledge and information from e-mail text has become an important step for cybercrime investigation and evidence collection. Yet, it is one of the most challenging and time-consuming tasks due to special characteristics of e-mail dataset. In this paper, we focus on the problem of mining the writing styles from a collection of e-mails written by multiple anonymous authors. The general idea is to first cluster the anonymous e-mail by the stylometric features and then extract the writeprint, i.e., the unique writing style, from each cluster. We emphasize that the presented problem together with our proposed solution is different from the traditional problem of authorship identification, which assumes training data is available for building a classifier. Our proposed method is particularly useful in the initial stage of investigation, in which the investigator usually have very little information of the case and the true authors of suspicious e-mail collection. Experiments on a real-life dataset suggest that clustering by writing style is a promising approach for grouping e-mails written by the same author.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.