Abstract
We propose a weighted minimum variance allocation model, denoted by WMVA, which distributes an amount of a divisible resource as fairly as possible while satisfying all demand intervals. We show that the problem WMVA has a unique optimal solution and it can be characterized by the uniform distribution property (UDP in short). Based on the UDP property, we develop an efficient algorithm. Theoretically, our algorithm has a worst-case $$O(n^2)$$ complexity, but we prove that, subject to slight conditions, the worst case cannot happen on a 64-bit computer when the problem dimension is greater than 129. We provide extensive simulation results to support the argument and it explains why, in practice, our algorithm runs significantly faster than most existing algorithms, including many O(n) algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.