Abstract

Clustering is a common methodology for analyzing the gene expression data. In this paper, we present a new clustering algorithm from an information-theoretic point of view. First, we propose the minimum entropy (measured on a posteriori probabilities) criterion, which is the conditional entropy of clusters given the observations. Fano's inequality indicates that it could be a good criterion for clustering. We generalize the criterion by replacing Shannon's entropy with Havrda-Charvat's structural alpha-entropy. Interestingly, the minimum entropy criterion based on structural alpha-entropy is equal to the probability error of the nearest neighbor method when alpha = 2. This is another evidence that the proposed criterion is good for clustering. With a non-parametric approach for estimating a posteriori probabilities, an efficient iterative algorithm is then established to minimize the entropy. The experimental results show that the clustering algorithm performs significantly better than k-means/medians, hierarchical clustering, SOM, and EM in terms of adjusted Rand index. Particularly, our algorithm performs very well even when the correct number of clusters is unknown. In addition, most clustering algorithms produce poor partitions in presence of outliers while our method can correctly reveal the structure of data and effectively identify outliers simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.