Abstract

Genome sequences are the most basic, yet most essential pieces of data in all biological analysis. Genome sequence is the solution to the Genome Assembly problem which remakes the entire sequence from a set of reads which are unordered and very small in size. Genome Assembly problem is therefore, quite complex and is broadly divided into denovo and comparative assembly. Comparative assembly takes the aid of a reference sequence, closely related to the unassembled genome, to determine the relative order of the reads with respect to one another, and then joins them together to form the sequence. This paper explores all variants of Minimum Description Length (MDL) to find the best reference sequence for comparative assembly. The paper looked at two-part MDL, Sophisticated MDL and MiniMax Regret and found that Sophisticated MDL performs better than two-part MDL, however, MiniMax regret owing to the nature of the problem was unsuitable. The proposed scheme is prior free and can be incorporated in the data preprocessing stage for all comparative assemblers allowing the assembly process to make use of the best reference sequence available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.